“BioPhoT project: a new generation of birch wood for bone fixation - a sustainable path from forest to functional implants - OsteoWood”

A team of scientists at the Latvian State Institute of Wood Chemistry (LVKCKI) is working on a new generation of bone fixation solutions. Their approach combines sustainable forestry with medical innovation, promoting the development of green technologies and strengthening Latvia's position in the biotechnology and medical materials market. The result is that patients have access to a new, non-metallic implant material that can provide better biocompatibility and reduce the risks of complications compared to traditional implants.

“There are a surprising number of similarities between the structure of a tree cell and that of a human cell,” says LVKCI researcher, project leader “OsteoWood” Dr.chem. Laura Ange.

Wood and human bone are both living, breathing materials - they respond to stress, adapt to their environment and accumulate experience in their structure. The wood fibre system works in a similar way to human bone tissue - it provides fluid flow, nutrient movement and mechanical strength while maintaining flexibility. In both wood and bone, this hierarchical structure - from microscopic cells to macroscopic formations - is responsible for their strength, plasticity and ability to live in harmony with their environment. It is this similarity between wood and human bone that inspired the OsteoWood project.

The OsteoWood project aims to develop and validate an innovative birch wood material for osteosynthesis implants, offering a biocompatible alternative for patients who are not suitable for traditional metal implants (e.g. titanium or steel). Approximately 2-5 % patients suffer from allergic reactions or metal intolerance, and this project offers a solution for these situations.

“The OsteoWood team develops semi-delignified, densified and mechanically resistant birch wood samples that are impregnated with oligo-chitosan to improve their biocompatibility and dimensional stability. The material will be developed to TRL3 level through microscopic structural analysis, mechanical tests and cell compatibility tests under laboratory conditions.

This niche biomaterial solution has not been widely developed in the world so far and its potential is focused on the future export and medical innovation direction, based on the renewable resources available in Latvia and the high level of wood chemistry expertise.

The project is implemented by a team of researchers from LVKCI, Riga Stradins University (RSU) and the Organic Synthesis Institute (OSI): Laura Andže, Vadims Nefjodovs, Mārtiņš Andžs, Juris Zoldners, Sigvards Krongorns, Ulla Milbreta, Antons Sizovs and Mārīte Škute.

“BioPhoT projects: nine projects implemented by RTU scientists

“In the first call of BioPhoT, Riga Technical University (RTU) research teams have received a total of €1.8 million to translate nine scientific results and technologies into practical solutions for biomedicine, photonics, sustainable chemistry and smart engineering.

200 000 will be allocated for the development of each project. This will allow a targeted increase in technology readiness by at least one level. This is a direct contribution to productivity and the creation of science-intensive start-ups, as well as to the greater resilience and competitiveness of the Latvian economy in the global network.

The funding is not just about developing technologies in the lab - it is a bridge to practical applications: implementing pilot projects in industry, protecting intellectual property, developing commercialisation strategies and international cooperation.

“The next challenge is to focus on helping teams move from the lab to validating technologies in real-world settings, to strengthen collaboration with industry, and to purposefully raise the technological readiness of innovations from concept to practical solution. This means building prototypes, testing solutions outside the lab, preparing patent applications, equipping teams with business competences, taking practical steps in market research and fostering international cooperation,” emphasises “Andris Baumanis, coordinator of the BioPhoT mentor network.

Biomaterials for infection control and rapid bone regeneration - “BIOCORE” 

Infections and slow bone regeneration are a major problem in medicine, especially after trauma or surgery. Existing materials are often unable to simultaneously inhibit infection and stimulate bone regeneration. The project is developing next generation biomaterials with antimicrobial properties that simultaneously promote bone healing, giving the public access to safer, more effective treatments towards faster recovery.

The project team is led by Professor Dagnija Loča from the Institute of Biomaterials and Bioengineering, Faculty of Science and Technology, RTU.

Robust EMI protection for high-integrity cyber security solutions

Electromagnetic interference can cause data loss and damage equipment. Currently, there is a lack of effective, sustainable protective materials to guard against this. The project is developing a new coating that protects devices from electromagnetic interference, ensuring their stable and reliable operation. The result will be more reliable cyber security solutions.

The project team is led by Sergey Gaidukov, tenure professor at RTU Faculty of Science and Technology.

Latest generation blood collection barrel for bone regeneration procedures

Bone regeneration procedures require high-quality biomaterials, which are supplemented with blood components during surgery. Existing blood collection tools often limit the quality of results. In this project, scientists are developing a new barrel that improves the preparation and use of biomaterials and blood components. This will allow safer and more accurate procedures, reducing the risk of complications.

The project team is led by Arita Dubņika, Senior Researcher at the Institute of Biomaterials and Bioengineering, Faculty of Science and Technology, RTU.

Technology for converting waste tyre rubber into a smart additive to improve asphalt concrete recycling - RE-TECH-ROAD“

Tyre recycling is dominated by low-value-added solutions and some practices create additional environmental risks. The project proposes a new approach - reactive extrusion technology - to create a smart, multifunctional modifier. Its addition to road construction materials will renew ageing bitumen, improve self-healing and promote the recycling of tyres and asphalt concrete, thus creating more durable and sustainable roads.

The project team is led by Associate Professor Viktors Haritonovs from the Institute of Civil Engineering, Faculty of Civil Engineering and Mechanical Engineering, RTU.

Development of an innovative sink disinfection device against AMR micro-organisms - “B-Shield”

Antibiotic resistance is a global problem that spreads dangerous micro-organisms, especially in hospitals. Traditional disinfection solutions do not always provide sufficient protection. The project develops a device that integrates into sinks and automatically kills micro-organisms, thus reducing the risks of spreading infections and improving public health.

The project team is led by Brigita Dejus, Senior Researcher at the Institute of Water Systems and Biotechnologies, Faculty of Science and Technology, RTU.

Optical filtering based fibre Bragg grating sensor transducer

Engineering structures and equipment need accurate monitoring of loads and deformations, but existing solutions tend to be expensive and bulky. The researchers propose a compact and affordable optical transducer that provides high-precision measurements. The benefits are safer buildings, more reliable technology and wider availability of sensing technologies.

The project team is led by Andis Supe, Senior Researcher at the Institute of Photonics, Electronics and Electronic Communications, Faculty of Computer Science, Information Technology and Energy, RTU.

Establishment of a virtual testing laboratory for wooden materials and structures - VIWO-LAB“

Real tests on timber structures are expensive and time-consuming, so the researchers are developing a digital testing environment that can be used to simulate and test solutions before construction. This shortens the path towards safe, resource-efficient and sustainable projects.

The project team is led by Jānis Šliseris, Senior Researcher at the Institute of Civil Engineering, Faculty of Civil Engineering and Mechanical Engineering, RTU.

Detection and monitoring of clinically relevant biomarkers using sweat analysis - “SwyCard”

Traditional tests - especially for newborns - are invasive and carry additional risks. Researchers are developing a non-invasive diagnostic platform that detects clinical biomarkers in sweat, allowing real-time monitoring of health status and early detection of problems.

The project team is led by Kristaps Kļaviņš, Senior Researcher at the Institute of Biomaterials and Bioengineering, Faculty of Science and Technology, RTU.

CO₂ filter from recycled construction waste

The researchers propose solutions to two environmental challenges - CO₂ emissions and construction waste. The project develops a filter capable of capturing CO₂ using recycled building materials. The solution reduces climate impacts and gives new value to waste. 

The project team is led by Māris Šinka, Senior Researcher at the Institute of Sustainable Building Materials and Engineering Systems, Faculty of Civil Engineering and Mechanical Engineering, RTU.

“BioPhoT project: functional liquid biopsy test for tumour diagnosis and monitoring - FLUID-C”

Kā liecina virkne līdzšinējo pētījumu, no vēža šūnām iegūtas ekstracelulārās vezikulas (EV) veicina vēža attīstību, aktivējot dažādus signālceļus mērķa šūnās. Projektā “FLUID-C”, kas tiek realizēts Latvijas Biomedicīnas pētījumu un studiju centrā (BMC), zinātnieki strādā pie jaunas asins analīzes krūts vēža diagnostikai un savlaicīgai recidīvu atklāšanai. Tas atvieglos vēža savlaicīgu atklāšanu un pēcoperācijas monitoringu, tādējādi uzlabojot pacientu ārstēšanas efektivitāti un dzīves kvalitāti.

Piedāvātās tehnoloģijas galvenais komponents būs šūnu līnija, kas darbojas kā biosensors, t.i., spēj uztvert pacientu EVs un reaģēt uz tām ar noteiktu gēnu ekspresijas izmaiņām. “FLUID-C” projekta galvenais pētniecības mērķis ir izveidot fibroblastu šūnu līniju, kas kalpotu kā jutīgs EV biosensors, un identificēt gēnu ekspresijas parakstus, kurus specifiski inducē KV pacientu, bet ne veselu indivīdu EVs.

Projekta sasniedzamais mērķis ir iegūt pierādījumu, ka “FLUID-C” tehnoloģijas koncepcija darbojas, kā piemēru izmantojot krūts vēža diagnostiku, tādejādi sasniedzot TRL3, un izstrādāt ceļa karti šīs tehnoloģijas ieviešanai tirgū.

Galvenās projekta komercializācijas aktivitātes ietver intelektuālā īpašuma pārvaldības stratēģijas izstrādi, detalizētu komercializācijas ceļvedi, potenciālo industrijas partneru identificēšanu un mērķtiecīgu komunikācijas pasākumu īstenošanu, tādejādi iezīmējot skaidru ceļu šīs tehnoloģijas ieviešanai tirgū. Projekta komandu vada BMC vadošā pētniece Aija Linē.

“BioPhoT project: Advanced hollow fibre bioreactor supplement for induced therapeutic EV production - ”EVBoost“

Projekts “EVBoost”, kas tiek realizēts Latvijas Biomedicīnas pētījumu un studiju centrā (BMC), risina vienu no galvenajām problēmām reģeneratīvajā medicīnā: droša un rentabla ārpusšūnu vezikulu (EV) ražošana. Uzlabojot šos procesus, var paātrināt jaunu reģeneratīvo un bezšūnu terapiju izstrādi, kas piedāvātu drošākas un pieejamākas ārstēšanas iespējas pacientiem ar vēzi, deģeneratīvām un imūnsistēmas slimībām.

EV ir sīkas bioloģiskas daļiņas, ko dabīgi izdala šūnas, un tām ir būtiska loma šūnu savstarpējā komunikācijā. Tās tiek plaši pētītas kā potenciālas terapijas metodes audu atjaunošanai, imūnsistēmas modulācijai un hronisku slimību ārstēšanai. Tomēr to ražošana vajadzīgajā daudzumā klīniskai lietošanai joprojām ir nepietiekama. Pašreizējās metodes ir laikietilpīgas, dārgas un bieži vien ietekmē EV kvalitāti.

Lai risinātu šo problēmu, “EVBoost” komanda izstrādā moduli dobo šķiedru bioreaktoru sistēmām, kuras jau tiek izmantotas laboratorijās cilmes šūnu audzēšanai. Šis modulis pielieto elektromagnētisko stimulāciju mesenchimālajām cilmes šūnām, veicinot tās izdalīt vairāk EV. Sākotnējie pētījumi liecina, ka šī stimulācija nekaitē šūnām un nesamazina EV terapeitisko potenciālu. Ja šī pieeja tiks apstiprināta, tā nodrošinās mērogojamu un neinvazīvu metodi, lai ievērojami palielinātu EV ražību.

Projekts ne tikai attīsta tehnoloģiju, bet arī padziļina zinātnisko izpratni. Izmantojot uzlabotas multiomikas analīzes (integrējot proteomiku un transkriptomiku), tiks pētīts, kā stimulācija ietekmē šūnas un to ražotās EV. Šīs zināšanas parādīs iesaistītos molekulāros ceļus un var pavērt iespējas pielāgot EV ražošanu nākotnē.

Projekta galvenais mērķis ir pārnest EV stimulācijas moduli no laboratorijas koncepta uz apstiprinātu prototipu. Pirmkārt, projekta ietvaros tiks testēts un apstiprināts modulis dobo šķiedru bioreaktorā kontrolētos laboratorijas apstākļos, salīdzinot EV ražošanu ar stimulāciju un bez tās. Otrkārt, tiks analizēti bioloģiskie mehānismi, izmantojot multiomikas pieejas, kartējot izmaiņas proteīnos un RNS, lai saprastu, kā stimulācija ietekmē EV sastāvu un šūnu funkcijas. Treškārt, projekta ietvaros tiks nodrošinātas intelektuālā īpašuma tiesības, iesniedzot primāro patenta pieteikumu, lai aizsargātu inovāciju un stiprinātu tās turpmāko komercializāciju. Visbeidzot, ceturtkārt, tas sagatavos nākamos attīstības posmus, veicot mērķtiecīgu tirgus izpēti, iesaistot potenciālos lietotājus un izstrādājot jaunus grantu pieteikumus, lai atbalstītu mēroga paplašināšanu un klīnisko pārnesi.

Veselības aprūpes jomā EV ražošanas uzlabošana varētu paātrināt jaunu reģeneratīvo un bezšūnu terapiju attīstību, piedāvājot drošākas un pieejamākas ārstēšanas iespējas pacientiem ar vēzi, deģeneratīvām vai imūnsistēmas slimībām. Ekonomikas jomā projekts veicinās Latvijas biotehnoloģijas nozares izaugsmi, radot iespējas vietējām inovācijām, sadarbībai ar starptautiskiem partneriem un potenciāli jaunām augstas pievienotās vērtības darbavietām.

Projekts arī stiprina zinātnisko zināšanu bāzi, sniedzot jaunas atziņas par to, kā šāda veida stimulācija ietekmē šūnas molekulārajā līmenī. Tas var ne tikai atbalstīt EV balstītas terapijas, bet arī iedvesmot nākotnes biomedicīnas tehnoloģijas citās jomās. Svarīgi, ka “EVBoost” investē cilvēkkapitāla attīstībā, jo visus pētniecības uzdevumus veic studenti, doktoranti un jaunie pētnieki zem starptautiski pieredzējuša vadošā pētnieka. Tas nodrošina prasmju nodošanu, zināšanu pārnesi un Latvijas zinātniskās ekosistēmas ilgtspējību. Projekta komandu vada BMC pētniece Karīna Narbute.